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Several recent papers discuss a viscous micropump consisting of Poiseuille flow of
fluid between two plates with a cylinder placed along the gap perpendicular to the
flow direction (e.g. Sen, Wajerski & Gad-el-Hak 1996). If the cylinder is not centred,
rotating it will generate a net flow and an additional pressure drop along the channel,
due to the net tangential viscous stresses along its surface. The research reported here
complements existing work by examining the lubrication limit where the gaps between
the cylinder and the walls are small compared to the cylinder radius. Lubrication
analysis provides analytical relations among the flow rate, torque, pressure drop and
rotation rate. Optimization of the flow parameters is shown in order to determine
the optimal geometry of the device, which can be used by micro-electrical-mechanical
systems designers. It is also shown, for example, that a device cannot be developed
that achieves maximum flow rate and rotation simultaneously. In addition, since the
Reynolds number can be smaller than 1, the Stokes equations are solved for this
configuration using a numerical boundary integral method. The numerical results
match the lubrication solution for small gaps, and determine the limits of validity for
using the lubrication results.

1. Introduction
The development of micro-electro-mechanical systems (MEMS) has generated great

interest in the design and demonstration of micropumps, micromotors, microactu-
ators and other mechanical devices (Ho & Tai 1998; Wenning 1999; Aluru et al.
1998). Some of the applications involve fluid-structure interactions in the viscously
dominated flow limit. For example, Sen, Wajerski & Gad-el-Hak (1996) proposed
and demonstrated experimentally a viscous micropump that uses a rotating cylinder
to generate flow between two plates. The device has been studied numerically using
two-dimensional finite-element methods (Sharatchandra, Sen & Gad-el-Hak 1997)
and three-dimensional finite-element software (DeCourtye, Sen & Gad-el-Hak 1998).
The research reported here complements this work by using modelling and simulation
methods specific to thin gaps and/or low-Reynolds-number flows, which are two lim-
its that have potential applicability. In particular, our work addresses the lubrication
limit of the viscous micropump configuration, and investigates the full Stokes flow
problem since the Reynolds number of the flow based on the cylinder radius can be
much less than 1. The resulting Stokes equations are solved using a boundary integral
method, thus eliminating the problem of insufficient mesh generation in the gaps, that
is often encountered in finite-element methods.

Consider Poiseuille flow in the space between two plates. A cylinder is introduced
perpendicular to the flow and parallel to the walls. If the cylinder is not centred in
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Figure 1. (a) Sketch of viscous micropump/micromotor where the flow sufficiently far upstream
and downstream is parabolic. (b) Sketch of pressure at position x along channel, indicating the
definitions of ∆ptotal , ∆pcyl and ∆pPois; the solid line is with the cylinder and the dashed line is
without the cylinder (Poiseuille flow).

the gap, it will tend to rotate due to the net tangential viscous stresses along the
surface of the cylinder, as indicated in figure 1(a). Conversely, if the eccentrically
placed cylinder is rotated by an externally applied torque, it will generate a flow in
the channel and an accompanying pressure drop across the cylinder. The pressure
could be measured at two locations x = `− upstream and x = `+ downstream of the
cylinder to determine a total pressure drop ∆ptotal . The pressure drop is denoted here
as

p(`−)− p(`+) = ∆ptotal = ∆pPois + ∆pcyl , (1.1)

as shown in figure 1(b) where ∆pPois is the pressure drop due to Poiseuille flow at
the same flow rate in the absence of a cylinder, and where ∆pcyl is the additional
pressure difference due to the cylinder. Since we can find ∆pPois from the flow rate,
we can characterize the entire flow using four parameters: flow rate per unit width
q, rotation rate Ω, pressure drop ∆pcyl , and torque per unit width L applied to the
cylinder. We will utilize both a force balance and a torque balance so that given two
parameters we can solve for the other two. Hereinafter, our concern about pressure
drop will be with that across the cylinder only, so ∆pcyl will be denoted simply ∆p.

For example, a configuration that represents a motor is where ∆p and the torque L
of the load on the cylinder are given, and the rotation rate and flow rate through the
device are determined. Note that in this case a pump and motor are the same device,
but with different input and output parameters.

We consider the low-Reynolds-number flow limit. Since the Stokes equations are
linear, there must be a linear relationship between the four parameters q, Ω, ∆p, and
L. We may thus construct a matrix of coefficients,

µ

[
A∆pq ALq
A∆pΩ ALΩ

](
∆p
L

)
=

(
q
Ω

)
, (1.2)

where the A are functions of geometry and allow complete characterization of the
system’s response. This matrix is one of six possible matrices since we are given two
of the four parameters. The matrix elements can be determined analytically using a
lubrication analysis, and can be calculated numerically using the boundary integral
method. In § 2 we give a simple proof that A∆pΩ = ALq .

In this paper we first provide an analytical solution for this configuration using the
lubrication approximation (§ 3). The full solution to the Stokes flow problem is found
numerically using the boundary integral technique (§ 4), and allows the calculation
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of the flow parameters with non-lubrication gap sizes. Results are summarized in § 5
where optimization of a given parameter is performed using the lubrication solution
given two other parameters. The numerical solution also determines the region of
validity of the lubrication approximation.

2. Reciprocal theorem
The reciprocal theorem for the Stokes equations ∇ · σ = 0, where σ is the stress

tensor, states that two flows (u, σ) and (u∗, σ∗) satisfy (see for example Kim & Karrila
1991) ∫

S

n · σ · u∗ dS =

∫
S

n · σ∗ · u dS. (2.1)

For the geometry shown in figure 1, the surface S is made up of three parts: the
cylinder SC , the top and bottom walls S±, and the flat sections S`± far enough upstream
and downstream that the velocity profile is parabolic. On S`− , u = u(y)ex and n = −ex
so ∫

S`−
n · σ · u∗ dS = (p+ ∆ptotal)

∫ h

0

u∗(y) dy = (p+ ∆ptotal)q
∗, (2.2)

and similarly ∫
S`+

n · σ · u∗ dS = −pq∗. (2.3)

Integrals vanish on the walls where u = 0, and on SC , u = Ω ∧ r, so∫
SC

n · σ ·Ω∗ ∧ r dS =

∫
SC

r ∧ (n · σ) dS ·Ω∗ = LΩ∗, (2.4)

where Lez is the torque per unit length applied to the cylinder and ez is along the
axis of the cylinder, directed out the page. Next write ∆ptotal = ∆pPois + ∆pcyl , with
∆pPois = cq, where c is a function of ` and channel height. Repeating the above steps
for the right-hand side of equation (2.1) leads to (the cqq∗ term cancels)

LΩ∗ + ∆pcylq
∗ = L∗Ω + ∆p∗cylq. (2.5)

Denoting ∆pcyl as ∆p, we use equation (1.2) to eliminate q and Ω in terms of ∆p and
L and find

(L∆p∗ − L∗∆p)(A∆pΩ − ALq) = 0. (2.6)

Since this must hold for all possible flows, we conclude that A∆pΩ = ALq . We therefore
only need to find three elements of the matrix in equation (1.2).

3. Lubrication analysis
Consider the geometry shown in figure 1, where the two gaps h+(x) and h−(x) are

small compared to a, the radius of the cylinder. The velocity field is u = (u, v) and
x is the direction along the channel. The steady lubrication equations for the flow in
the thin gaps are

µ
∂2u

∂y2
− ∂p

∂x
= 0,

∂p

∂y
= 0, (3.1a)

∂u

∂x
+
∂v

∂y
= 0. (3.1b)
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The boundary conditions are that on the walls u = 0, and on the cylinder u = Ω ∧ r.
The solution of these equations for a non-rotating cylinder is standard (see for
example Leal 1993; Keller 1964) and here we extend the calculation to account for
rotation and applied torques. From equation (3.1a), p = p(x) only. The flow velocity
in the top gap is found by integrating (3.1) twice and using the boundary conditions
u+(0) = 0 and u+(h+) = −Ωa. Measuring y from the wall to the cylinder, which in
the top gap is directed downwards, we find

u+ =
1

2µ

dp+

dx
(y2 − h+y)− Ωay

h+

. (3.2)

The flow rate per unit width of channel is the same at every position x, and is

found by integrating vertically across the gap using q =
∫ h

0
u dy, which for the top

gap is

q+ = − h3
+

12µ

dp+

dx
− Ωah+

2
. (3.3)

Since q+ is constant, the total pressure drop ∆p+ is found by integrating dp+/dx
along the gap from −∞ to +∞, so

∆p+ = −12q+µ

∫ ∞
−∞

dx

h3
+(x)

− 6µΩa

∫ ∞
−∞

dx

h2
+(x)

, (3.4)

where ∆p+ = p+∞ − p−∞. This use of integrating to ±∞ is permissible since all
variations in the gap occur on the scale (h±a)1/2 � a. With the approximation that
the gap thickness varies quadratically as

h+(x) ≈ ho+
+
x2

2a
= ho+

(
1 +

x2

2aho+

)
, (3.5)

where ho+
is the minimum gap thickness, we find

∆p+ = −9
√

2πµa1/2

2h
5/2
o+

q+ − 3
√

2πµa3/2

h
3/2
o+

Ω. (3.6)

Similarly, for the bottom gap

∆p− = −9
√

2πµa1/2

2h
5/2
o−

q− +
3
√

2πµa3/2

h
3/2
o−

Ω. (3.7)

To close the above system of equations, we note that the total pressure drop
across each gap must be equal since the variations that occur within the gap are
much larger than those that occur on the scale of a outside the gap. The additional
contributions to the pressure drop across the cylinder that derive from fluid motion
outside the narrow gap are expected to be O(µqmax/a

2), where qmax = max(q+, q−),
which is small compared to the corresponding terms in equations (3.6) and (3.7).
Writing ∆p+ = ∆p− = −∆p, where ∆p > 0, we now have two equations with three
unknowns: q+, q− and Ω. The torque (per unit width) is found by integrating the
shear stress τxy over the surface of the cylinder, where τxy = µ∂u/∂y |h+

, multiplied by
the moment arm a,

L+ = a

∫ ∞
−∞

τxy|h+
dx = a

∫ ∞
−∞

(
1

2

dp+

dx
h+ − µΩa

h+

)
dx. (3.8)

Using equation (3.3) for dp+/dx and the parabolic profile of the gap for h+(x), we
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Given uc

L L/µa
Ω Ωa
∆p ∆pa/µ
q q/a

Table 1. Characteristic velocity based on different parameters.

integrate to obtain

L+ = −4
√

2πµa3/2

h
1/2
o+

(
3

4

q+

ho+

+ Ωa

)
. (3.9)

Similarly, for the bottom gap

L− = −4
√

2πµa3/2

h
1/2
o−

(
3

4

q−
ho−
− Ωa

)
. (3.10)

If the applied torque is L, then for steady-state operation L + L+ + L− = 0 which
yields

L =
4
√

2πµa3/2

h
1/2
o+

(
3q+

4ho+

+ Ωa

)
− 4
√

2πµa3/2

h
1/2
o−

(
3q−
4ho−

− Ωa
)
. (3.11)

It is convenient to non-dimensionalize all variables by using the characteristic
length a, the shear viscosity µ, and a characteristic velocity uc, and to denote the
dimensionless variables using a superscript ∗:

∆p= ∆p∗
µuc

a
, Ω =

uc

a
Ω∗, L = µucaL

∗,

q± = ucaq
∗±, h0± = ah∗0± .

 (3.12)

The characteristic velocity is determined by one of the given four flow parameters
and is listed in table 1. Also, it is useful to introduce two geometric parameters

δ = h∗o+
+ h∗o− , η =

h∗o+

δ
, (3.13)

from which h∗o−/δ = 1 − η follows. The lubrication approximation requires that
δ � 1 and shortly the scaling involving δ will be shown. Notice that η measures the
eccentricity, so varies from 0 to 1. Finally, the three equations for dimensionless q∗+,
q∗− and Ω∗ in terms of ∆p∗, L∗ and the geometrical factors η and δ are

3q∗+
2η

+ Ω∗δ =
∆p∗η3/2δ5/2

3
√

2π
, (3.14a)

3q∗−
2(1− η)

− Ω∗δ =
∆p∗(1− η)3/2δ5/2

3
√

2π
, (3.14b)

3q∗+
η3/2
− 3q∗−

(1− η)3/2
+

4
(
(1− η)1/2 + η1/2

)
Ω∗δ

η1/2(1− η)1/2
=
L∗δ3/2

√
2π

. (3.14c)

Equation (3.14) provides a complete lubrication characterization of the micropump
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device. Dropping the ∗ and solving for Ω, q+ and q− yields

q+ =
2∆pδ5/2

9
√

2π

η3/2
(
η3/2 + (1− η)1/2(3η − 1)

)
η1/2 + (1− η)1/2

− Lδ3/2

3
√

2π

η3/2(1− η)1/2

η1/2 + (1− η)1/2
, (3.15a)

q− =
2∆pδ5/2

9
√

2π

(1− η)3/2
(
(1− η)3/2 + η1/2(2− 3η)

)
η1/2 + (1− η)1/2

+
Lδ3/2

3
√

2π

η1/2(1− η)3/2

η1/2 + (1− η)1/2
,

(3.15b)

Ω =
∆pδ3/2

3
√

2π

(
(1− η)η1/2 − η(1− η)1/2

)
+
Lδ1/2

2
√

2π

(
(1− η)η1/2 − η(1− η)1/2

)
1− 2η

.

(3.15c)

It may be observed that q+(η, δ; ∆p, L) = q−(1 − η, δ; ∆p,−L) as expected from
symmetry. The total flow rate q = q+ + q−, so we will refer to q from now on. The
above equations lead to

q =
2∆pδ5/2

9
√

2π

(
η1/2 + (1− η)1/2

) (
3η2 − 3η + 1

)
+
Lδ3/2

3
√

2π

(
(1− 2η)η1/2(1− η)1/2

η1/2 + (1− η)1/2

)
,

(3.16a)

Ωδ =
∆pδ5/2

3
√

2π

(
(1− 2η)η1/2(1− η)1/2

η1/2 + (1− η)1/2

)
+
Lδ3/2

2
√

2π

(
η1/2(1− η)1/2

η1/2 + (1− η)1/2

)
, (3.16b)

which corresponds to the matrix representation in equation (1.2). From the reciprocity
of Stokes flow (§ 2), A∆pΩ = ALq , so there are only three coefficients that characterize
the geometry. One can see that the matrix elements are symmetric about η = 1/2.

In fact, equation (1.2) is one of the six possible matrix representations of the
relationships among the four parameters. For example, one could perform Gauss–
Jordan elimination to find a pair of equations involving (q,∆p, Ω) and (L,∆p, Ω).
There are only four relations involving three of the four parameters, and these are
listed below for the reader’s convenience. To simplify the relations, we have substituted
the factors involving δ with

∆p̂ =
∆pδ5/2

π
√

2
, L̂ =

Lδ3/2

π
√

2
, Ω̂ = Ωδ, (3.17)

and q̂ = q for consistency. Note that a given system has two equations and two
unknowns, so it is left to the reader to choose the pair of relations for their particular
device. The four relations are

(η5/2 + (1− η)5/2)L̂− 2(η1/2 + (1− η)1/2)2(3η2 − 3η + 1)

η1/2(1− η)1/2
Ω̂ + 3(1− 2η)q̂ = 0, (3.18a)

3L̂− 6(η1/2 + (1− η)1/2)Ω̂

η1/2(1− η)1/2
+ 2(1− 2η)∆p̂ = 0, (3.18b)

9q̂ − 2(η5/2 + (1− η)5/2)∆p̂− 6(1− 2η)Ω̂ = 0, (3.18c)

9q̂ − 2(η1/2 + (1− η)1/2)(3η2 − 3η + 1)∆p̂− 3(1− 2η)η1/2(1− η)1/2

(η1/2 + (1− η)1/2)
L̂ = 0. (3.18d)

There is a special case when the cylinder is centred (η = 1/2) for which the right-most

terms vanish and the equations decouple. The result is L̂ = 4
√

2Ω̂ and ∆p̂ = 9
√

2q̂,
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Figure 2. Boundary used for the integral equation solution: the solid line is the full contour of
integration, and points show the half-contour used in the numerics when exploiting symmetry.

so ∆p̂ is not independent of q̂, and L̂ is not independent of Ω̂. At the end of § 4
we compare the above analytical results and our own Stokes flow calculations with
published finite-Reynolds-number finite-element numerical simulations. We will see
that even for O(1) Reynolds numbers there is good agreement for δ < 0.2.

4. Solution using a boundary integral method
In this section, the full Stokes flow problem with arbitrary gap sizes is solved

numerically. The fluid in the device is enclosed by a boundary S shown in figure 2. In
this case, the boundary S consists of two walls S+ and S− of length `, two semicircular
arcs S∞+ and S∞− at x = ±`/2, and a circular cylinder SC centred at the origin. Over
S∞+ and S∞−, the fluid velocity is defined to be parabolic flow, denoted UP . The length
` is chosen to be large enough that the pressure gradient at x = `/2 is very nearly
constant. The solution is found using the boundary integral equation for Stokes flow
in a volume of fluid V bounded by S ,

∫
S

n · σ · J dS −
∫
S

n · K · u dS =


u(x0), x0 ∈ V
1
2
u(x0), x0 ∈ S

0, x0 /∈ V ,
(4.1)

where n is the unit normal pointing out of the fluid (see Youngren & Acrivos 1975;
Pozrikidis 1992; Tanzosh, Manga & Stone 1992). All variables are made dimensionless
using a and uc (see table 1). For two-dimensional flows, the tensors J and K are

J =
1

4π

(
I log r − rr

r2

)
, K =

1

π

rrr

r4
, (4.2)

which are the fundamental solutions to Stokes flow due to a point force acting at x0,
where r = x− x0 and r = |r|. Since u = 0 on the walls and u = Ω∧ r on the cylinder,
the boundary integral equation reduces to

∫
S

f · J dS −
∫
S∞±

n · K · u dS =


Ω ∧ r, x0 ∈ SC
1
2
UP (x0), x0 ∈ S∞±

0, x0 ∈ S±,
(4.3)
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Figure 3. Vertical component of f along the wall, equal to the pressure in the fluid, used to calculate
∆p, the pressure drop in excess of the losses due to Poiseuille flow over a length `. This simulation
had L = 0.

where f = n · σ, represents the unknown traction per unit width acting on the
boundary.

To solve equation (4.3) for f, the boundary is discretized into n nodes, as shown on
the right-hand side of figure 2, which are described using an arclength-like parameter
s that increases clockwise along the outer and inner boundaries. The unknown force
f is approximated linearly by

f(s) =

n∑
k=1

wk(s)fxkex +

n∑
k=1

wk(s)fykey, (4.4)

where the weight function wk is defined by

wk(s) =

{
1− |s− k| k − 1 6 s 6 k + 1

0 (s < k − 1) ∪ (k + 1 < s).
(4.5)

The boundary is described using lines and circular arcs. The nodal spacing is chosen
to vary quadratically along SC and S±, so that the node density in the gap is high
enough to resolve the lubrication flow. Finding a way to resolve the flow in the thin
gaps enabled this work to study O(1) gaps as well as the narrow lubrication regime. In
the lubrication limit, the lowest resolution was required for δη = 1, for which n ≈ 440,
and the highest resolution was for δη = 0.015 for which n ≈ 1700. A set of 2n linear
equations is generated by taking x0 to be each node xk and solving both components
of equation (4.3) for the unknowns fxk and fyk at each node. The left–right symmetry
of the problem is exploited to reduce the computation time by a factor of eight, since
the matrix inversion uses a number of calculations proportional to n3.

The resulting dimensionless extra pressure drop across the cylinder ∆p is

∆p = fy(`/2)− fy(−`/2)− 12`

(2 + δ)3
, (4.6)

which is independent of ` and where the last term is the pressure drop due to
Poiseuille flow in a channel of height 2 + δ and length `. Figure 3 shows a typical
plot of fy , which at the planar wall is equal to the pressure.

The resulting dimensionless torque per unit width L = Lez is found by integrating
the tangential stresses over the surface of the cylinder,

L =

∫ 2π

0

(fy cos θ − fx sin θ) dθ. (4.7)
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Figure 4. Comparison between lubrication solution, Stokes solution and Re = 1 solution from
DeCourtye et al. (1998) for the bulk velocity q/(2 + δ) when η = 0.05, ∆p = Ω = 1; the transverse
dimension of the channel is infinite.

The code was checked using Poiseuille flow, corresponding to the case where the radius
of the cylinder is zero, and circular Couette flow (Batchelor 1967) corresponding to
the case where the net flow rate q = 0 and the length of the wall ` = 0.

We close this section by providing in figure 4 a comparison with published numerical
results from the literature. DeCourtye et al. (1998) report the average velocity for an
infinitely wide channel (their figure 4), with η = 0.05, dimensionless ∆p = Ω = 1 and
Re = 2Ωa2/ν = 1. Since the average velocity is q/(2 + δ), figure 4 shows that for
small δ the Stokes and lubrication solutions tend to the results from DeCourtye et al.
(1998), and that for δ > 0.4, our solutions continue to increase monotonically while
the Re = 1 solution plateaus.

5. Results
In this section, we report results for typical operating conditions using the lubri-

cation approximation. In addition, we use the results from the lubrication analysis
to calculate optimal operating flow parameters and geometry. We also determine
the region of validity of the lubrication approximation by comparing it to the full
numerical solution of the Stokes equations.

5.1. Zero rotation using the lubrication solution

A simple case of the lubrication solution is where the rotation rate is zero. Given the
flow rate, equation (3.18) reduces to

∆p̂ =
9q̂

2

(
1

η5/2 + (1− η)5/2

)
, (5.1a)

L̂ = −3q̂

(
1− 2η

η5/2 + (1− η)5/2

)
. (5.1b)

Figure 5 shows these relationships plotted versus η, where the maximum and minimum
are shown as squares. The extremum of ∆p̂/q̂ occurs at η = 1/2 and the extremum
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Figure 5. For zero rotation, the three ratios ∆p̂/q̂, L̂/q̂ and L̂/∆p̂ are shown as functions of η, the
geometrical factor denoting the eccentric position of the cylinder in the channel. A maximum or
minimum is shown as a square on the plot.

of L̂/q̂ occurs at (3−√5)/6 ≈ 0.1273. There are three ways to use these results. For
example, if the flow rate per unit width q is specified, then uc = q/a, and q̂ = 1

so the dimensional pressure drop ∆p = ∆p̂ µqπ
√

2/(a2δ5/2) and L = L̂ µqπ
√

2/δ3/2.
Similarly, one could specify ∆p or L.

5.2. Zero torque using the lubrication solution

Another simple case is that of zero applied torque, in which case the cylinder rotates
freely due to the flow. Equation (3.18) reduces to

Ω̂ =
(1− 2η)η1/2(1− η)1/2

3(η1/2 + (1− η)1/2)
∆p̂, (5.2a)

q̂ =
2

9

(
η1/2 + (1− η)1/2

) (
3η2 − 3η + 1

)
∆p̂. (5.2b)

As in the previous section, there are three ways to utilize these equations, correspond-
ing to whether q, ∆p or Ω is specified. Figure 6 shows these relationships, which are
symmetric about η = 1/2. The extremum and corresponding η for each curve can be
determined analytically and are listed in table 2 along with the corresponding ratios
ho−/ho+

.

In physical terms, the maximizing of Ω̂/∆p̂ when ho−/ho+
≈ 6.85 means that the

bottom gap must be about seven times the size of the top gap for the rotation rate to
be maximized for a given pressure drop. This conclusion is justified by observing that
the rotation goes to zero when the cylinder approaches the wall and is again zero
when the cylinder is centred, so a maximum must exist in between. The second case
in table 2 shows that the bottom gap must be about 60 times the top gap to obtain
the maximum flow rate. This conclusion is justified by observing that as the cylinder
is placed more eccentrically, more fluid is dragged through the large gap by rotation.
Close to the wall though, the cylinder ceases to rotate and the extra flow from the
rotation is lost, so the maximum flow rate is expected when the cylinder is a short
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Figure 6. For zero torque, the three ratios Ω̂/∆p̂, q̂/∆p̂ and Ω̂/q̂ are shown as functions of η, the
geometrical factor denoting the eccentric position of the cylinder in the channel. Maxima are shown
as squares on the plot, and due to the symmetry, η 6 0.5 is shown only.

Ratio Extremum ηextremum ho−/ho+

Ω̂/∆p̂ 0.0642 (3−√5)/6 ≈ 0.127 6.85

q̂/∆p̂ 0.237 (15−
√

93 + 48
√

6)/30 ≈ 0.0163 60.4

Ω̂/q̂ 0.398 0.256 2.91

Table 2. Ratio and η at each extremum when L̂ = 0, and the corresponding ratio ho−/ho+ .

distance away from the wall. Note that the critical η is different for each case, so a
device cannot be developed that achieves maximum flow rate and rotation simulta-
neously. By examining figures 7(a) and 10(c) in the next subsection, this conclusion
also holds for non-zero applied torques.

5.3. Optimization by varying η

The previous case was for zero torque, and the next question addressed is how the
optimum parameter values listed in table 2 change for various non-zero torques.
For example, the extremum of Ω̂/∆p̂ now depends on the torque, L̂/∆p̂, from a

rearrangement of equation (3.18). One can determine the η for which Ω̂/∆p̂ is a

maximum or minimum for a given L̂/∆p̂. Equation (3.18) can be rearranged to

form three ratios by dividing all terms by each of three variables: Ω̂/∆p̂ ∝ L̂/∆p̂,

Ω̂/L̂ ∝ ∆p̂/L̂, and L̂/Ω̂ ∝ ∆p̂/Ω̂. This exercise can be performed for all possibilities
of the four equations in (3.18), yielding twelve plots. Figures 7–10 show all twelve
plots relating the ratios of parameters Ω̂, ∆p̂, q̂, and L̂, and some corresponding
extrema. These results provide a comprehensive summary of the micropump flow
configuration, including the parameters that provide optimization. The figures can be
used to learn something about the physical problem, given two parameters.
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Figure 7. Ratios from the Ω̂ − ∆p̂− L̂ equation: (a) Ω̂/∆p̂ versus η for various L̂/∆p̂, (b) Ω̂/L̂

versus η for various ∆p̂/L̂, and (c) L̂/Ω̂ versus η for various ∆p̂/Ω̂.

For example, figure 7(a) shows that as the applied torque increases from zero, the
location where maximum rotation is achieved moves further from the wall. Also, as
the ratio L̂/∆p̂ becomes large, the behaviour of the ratio Ω̂/∆p̂ becomes symmetrical
about the centre of the channel, meaning that torque determines the rotation rather
than pressure drop. Figure 8(a) also shows the tendency towards symmetry for large
torque, but relative to the flow rate. One could choose to design a device where L̂/q̂
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Figure 8. Ratios from the q̂ − Ω̂ − L̂ equation: (a) Ω̂/q̂ versus η for various L̂/q̂, (b) Ω̂/L̂ versus η

for various q̂/L̂, and (c) L̂/Ω̂ versus η for various q̂/Ω̂.

is known, and then one would examine figures 8(a) and 10(b). For example, if large
∆p̂ is desired and L̂/q̂ = 20, then η ≈ 0.6 would be appropriate, and also Ω̂/q̂ would
not be too far from its maximum.

The case of zero flow rate can also be discussed here, which corresponds to the
case where the flow in the top gap is equal in magnitude but opposite in direction
to the flow in the bottom gap. Figures 9(b,c) and 10(a,c) illustrate several choices
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Figure 9. Ratios from the q̂ − ∆p̂− Ω̂ equation: (a) ∆p̂/q̂ versus η for various Ω̂/q̂, (b) q̂/Ω̂ versus

η for various ∆p̂/Ω̂, and (c) q̂/∆p̂ versus η for various Ω̂/∆p̂.

for other parameters that permit zero net flow, and certain ranges of parameters for
which zero flow is not possible. For example, for L̂/∆p̂ > 2.5, zero flow is possible

when η ≈ 0.75, and for larger values of L̂/∆p̂ there are two choices of η which result
in zero flow. In fact, the lower of the two η values would be the one a designer would
choose in order to get a greater rotation rate, as shown by figure 7(a).
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5.4. Optimization by varying δ

The second of the two geometrical parameters is δ, denoting the ratio of the sum of
the gaps to the radius of the cylinder (equation (3.13)). By varying δ while keeping
the eccentricity η constant, local maxima or minima of the flow parameters can be
found. Using both optimizations, an extremum of a flow parameter such as rotation
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Figure 11. The intersection of two plots determines that ∂Ω/∂η = 0 and ∂Ω/∂δ = 0 at η = 0.333

and Ω̂/L̂ = 0.233.

rate can be found in all of (η, δ)-space where ∂Ω/∂η = 0 and ∂Ω/∂δ = 0, holding all
other parameters fixed. For example, with q and L constant, Ω = f(η, δ) only. In this
section, we will demonstrate this case to illustrate the idea, and leave it to the reader
to determine other optimizations as required.

Equation (3.18) can be written as

AΩδ = Bq + CLδ3/2, (5.3)

where A, B, and C are functions of η. An extremum of Ω occurs when

A
∂Ω

∂δ
= −Bqδ−2 + 1

2
CLδ−1/2 = 0, (5.4)

so q̂/L̂ = Cπ/B
√

2. The extremum is therefore

Ω̂

L̂
=

3π
√

2C

2A
=

3
(
η5/2 + (1− η)5/2

)
η1/2(1− η)1/2

4
(
η1/2 + (1− η)1/2

)2 (
3η2 − 3η + 1

) . (5.5)

In the previous subsection, figure 8(b) showed extrema of Ω̂/L̂ versus η for vari-

ous q̂/L̂. Plotting these extrema and equation (5.5) in figure 11, we conclude that
the maximum of Ω in (η, δ)-space occurs at the intersection where η = 0.333 and
Ω̂/L̂ = 0.233. The value of δ is then determined using the given L and the desired Ω.
These values for the optimal η and δ are a result of the lubrication approximation
and so require δ � 1 (see § 5.6). The exact optimal geometry can be found using
the full two-dimensional Stokes problem shown in § 4 which can be solved iteratively
in the neighbourhood of the optimum determined by the lubrication approxima-
tion.

5.5. Zero rotation using the boundary integral solution

Considering the case Ω = 0, we compare numerical results with predictions from
lubrication theory, equation (5.1). The two input variables into the boundary integral
simulation are the flow rate q and the rotation rate of the cylinder Ω and we choose
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Figure 13. Relative error of (a) pressure drop and (b) torque between the results from the
boundary integral simulations and the lubrication analysis.

the characteristic velocity uc = q/a, so q̂ = 1. Figure 12(a,b) shows that the numerical
solution indeed approaches the lubrication limit as δ becomes small. The solutions
are symmetric about η = 1/2. Figure 13(a, b) shows the relative error between the
results from the boundary integral simulations and the lubrication results. These
results show that the relative error in pressure drop is at most 10% for δ = 0.5,
corresponding to the geometry where the sum of the gaps is half the radius of the
cylinder. Even for δ = 1.5, the largest error is less than 23%, and the error when
centred (η = 1/2) is below 7%. The error in the torque is similarly bounded to about
10% when δ = 0.5. This result suggests that the expression for the pressure drop
using the simple analytical result from lubrication theory is a good approximation to
the full solution for δ 6 O(1), and improves as δ becomes small, as one expects in
thin geometries.
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5.6. Non-zero rotation and non-zero torque

To compare geometries with various δ when the rotation rate is non-zero, the
product Ωδ = Ω̂ must be constant. Figure 14(a,b) shows the boundary integral results
for Ω̂ = 10, q̂ = 1, and 0.1 6 δ 6 2.0 compared to the lubrication limit. When the
cylinder rotates, although the pressure drop prediction is accurate, the torque result
shows a noticeable difference and a slower approach to the lubrication prediction.

Closer examination of the data in figure 14(b) is required to observe the trend
towards the lubrication limit for the torque. Focusing on the η = 1/2 geometry,
several boundary integral simulations were performed at various δ to determine the
torque. Values of δ < 0.05 require a significant number of nodes in the gap for
adequate resolution, so such geometries take increasingly more time to calculate
accurately. Figure 15(a) shows the trend of the boundary integral result compared to
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the lubrication limit. The lubrication result is given by L̂ = 4
√

2Ω̂ from equation (3.18)
with η = 1/2. For Ω̂ = 10, L̂ = 40

√
2 = 56.569. The greatest difference is about 22%,

when δ ≈ 0.5. For smaller δ, the boundary integral result tends toward the lubrication
limit.

A reason for the disagreement is that the lubrication approximation neglects the
flow in the far field, which is outside the region of the gap and is generated by viscous
shear stresses from the rotation of the cylinder. Consider a second-order correction
term to the torque, in an expansion in some power of δ,

L = L0 + δαL1, (5.6)

where L0 is the lubrication result. The exponent α can be estimated by the following
scaling argument. From lubrication analysis of flow through the gap between a plane
and a circular cylinder, the length along the gap over which the stresses act is O(

√
ah0),

and the viscous stresses are O(µΩa/h0). Outside the gap, the length over which the
stresses act is O(a) and the stresses have magnitude O(µΩ). Since the torque per unit
width is stress times moment arm a, times the length over which they act, the ratio
of the net torque outside the gap to the torque inside is

net torque/width outside gap

net torque/width inside gap
=

µΩa2

(µΩa2/h0)
√
ah0

=

√
h0

a
= δ1/2. (5.7)

Therefore the second-order correction term in an approximation for the torque should
be O(δ1/2) as shown in figure 15(b) and L1 ≈ 28.6. However, to incorporate this outer
problem into the lubrication analysis would require matching the inner problem to
the outer region which appears to be complicated given the non-trivial geometry, and
is not attempted here. It will be sufficient for our purposes to observe that the torque
begins to tend toward the lubrication approximation when δ 6 0.5, for η = 1/2.

6. Conclusions
We have used the lubrication approximation to show that the general solution for

the flow over a rotating cylinder eccentrically placed in a two-dimensional channel
can be found in terms of four flow parameters q, Ω, ∆p, and L, and two geometrical
parameters η and δ. There are four equations, each of which linearly relates three of
the four flow parameters. Given two flow parameters, the optimal geometry η or δ
can be found in order to optimize a third parameter. For example, the optimization
allows a designer of MEMS devices to calculate the critical gap sizes for a particular
desired quantity, such as maximum flow rate. Also, it is shown that a device of this
configuration cannot be developed that achieves maximum flow rate and rotation
simultaneously, even for non-zero applied torque. Boundary integral methods are
demonstrated to be suitable for this problem where resolution in the thin gaps is
important. This numerical solution is shown to approach the lubrication limit for the
case of zero rotation, and the relative difference is approximately 2% for δ = 0.1,
where the sum of the gaps is 10% of the radius of the cylinder. For non-zero
rotation and non-zero torque, ∆p̂ from the boundary integral solution is shown to
approach the lubrication solution to within 5% when δ = 0.5 and to within 1%
when δ = 0.1. The result for torque approaches the lubrication solution more slowly,
reaching 10% difference when δ = 0.05 for η = 1/2. The second-order correction
term for the lubrication approximation of torque is shown to be proportional to
δ1/2.
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